Latihan Matematika Peminatan Kelas XII Nilai Limit Fungsi Trigonometri
# 6
Pilgan

Tentukan nilai dari limx0 x2tan4xxxcos4x!\lim\limits_{x\rightarrow0}\ \frac{x^2\tan4x}{x-x\cos4x}!

A

14\frac{1}{4}

B

12\frac{1}{2}

C

18\frac{1}{8}

D

23\frac{2}{3}

E

45\frac{4}{5}

Pembahasan:

Subtitusi x=0x=0 menghasilkan bentuk tak tentu 00\frac{0}{0}

Gunakan identitas trigonometri dan teorema limit trigonometri berikut.

cosax=12sin2 a2x\cos ax=1-2\sin^2\ \frac{a}{2}x

limx0 axsinbx=limx0 tanaxsinbx=ab\lim\limits_{x\rightarrow0}\ \frac{ax}{\sin bx}=\lim\limits_{x\rightarrow0}\ \frac{\tan ax}{\sin bx}=\frac{a}{b}

Dengan demikian, diperoleh

limx0 x2tan4xxxcos4x=limx0 xxtan4xx(1cos4x)\lim\limits_{x\rightarrow0}\ \frac{x^2\tan4x}{x-x\cos4x}=\lim\limits_{x\rightarrow0}\ \frac{x\cdot x\tan4x}{x\left(1-\cos4x\right)}

=limx0 xtan4x1(12sin22x)=\lim\limits_{x\rightarrow0}\ \frac{x\tan4x}{1-\left(1-2\sin^22x\right)}

=limx0 xtan4x2sin22x=\lim\limits_{x\rightarrow0}\ \frac{x\tan4x}{2\sin^22x}

=limx0 (12xsin2xtan4xsin2x)=\lim\limits_{x\rightarrow0}\ \left(\frac{1}{2}\cdot\frac{x}{\sin2x}\cdot\frac{\tan4x}{\sin2x}\right)

=limx0 12limx0 xsin2xlimx0 tan4xsin2x=\lim\limits_{x\rightarrow0}\ \frac{1}{2}\cdot\lim\limits_{x\rightarrow0}\ \frac{x}{\sin2x}\cdot\lim\limits_{x\rightarrow0}\ \frac{\tan4x}{\sin2x}

=121242=\frac{1}{2}\cdot\frac{1}{2}\cdot\frac{4}{2}

=12=\frac{1}{2}

Jadi, nilai dari limx0 x2tan4xxxcos4x=12\lim\limits_{x\rightarrow0}\ \frac{x^2\tan4x}{x-x\cos4x}=\frac{1}{2}