Latihan Matematika Peminatan Kelas XII Mencari Turunan Fungsi Trigonometri
# 6
Pilgan

Penyelesaian dari limxπ6cscxcscπ6sin(xπ6)\lim_{x\to\frac{\pi}{6}}\frac{\csc x-\csc\frac{\pi}{6}}{\sin\left(x-\frac{\pi}{6}\right)} adalah ....

A

3-\sqrt{3}

B

123\frac{1}{2}\sqrt{3}

C

123-\frac{1}{2}\sqrt{3}

D

232\sqrt3

E

23-2\sqrt3

Pembahasan:

Akan dicari limxπ6cscxcscπ6sin(xπ6)\lim_{x\to\frac{\pi}{6}}\frac{\csc x-\csc\frac{\pi}{6}}{\sin\left(x-\frac{\pi}{6}\right)}

Misalkan f(x)=cscxf\left(x\right)=\csc x artinya cscπ6=f(π6)\csc\frac{\pi}{6}=f\left(\frac{\pi}{6}\right)

Perlu diingat bahwa untuk sembarang fungsi f(x)f\left(x\right) dan g(x)g\left(x\right) berlaku

limxcf(x)g(x)=limxcf(x)limxcg(x)\lim_{x\to c}f\left(x\right)g\left(x\right)=\lim_{x\to c}f\left(x\right)\lim_{x\to c}g\left(x\right)

Berdasarkan yang diketahui pada soal dan pemisalan yang dibuat, diperoleh

limxπ6cscxcscπ6sin(xπ6)=limxπ6f(x)f(π6)sin(xπ6)\lim_{x\to\frac{\pi}{6}}\frac{\csc x-\csc\frac{\pi}{6}}{\sin\left(x-\frac{\pi}{6}\right)}=\lim_{x\to\frac{\pi}{6}}\frac{f(x)-f(\frac{\pi}{6})}{\sin\left(x-\frac{\pi}{6}\right)}

limxπ6cscxcscπ6sin(xπ6)=limxπ6xπ6sin(xπ6)f(x)f(π6)xπ6\Leftrightarrow\lim_{x\to\frac{\pi}{6}}\frac{\csc x-\csc\frac{\pi}{6}}{\sin\left(x-\frac{\pi}{6}\right)}=\lim_{x\to\frac{\pi}{6}}\frac{x-\frac{\pi}{6}}{\sin\left(x-\frac{\pi}{6}\right)}\cdot\frac{f(x)-f(\frac{\pi}{6})}{x-\frac{\pi}{6}}

limxπ6cscxcscπ6sin(xπ6)=limxπ6xπ6sin(xπ6)limxπ6f(x)f(π6)xπ6\Leftrightarrow\lim_{x\to\frac{\pi}{6}}\frac{\csc x-\csc\frac{\pi}{6}}{\sin\left(x-\frac{\pi}{6}\right)}=\lim_{x\to\frac{\pi}{6}}\frac{x-\frac{\pi}{6}}{\sin\left(x-\frac{\pi}{6}\right)}\cdot\lim_{x\to\frac{\pi}{6}}\frac{f(x)-f(\frac{\pi}{6})}{x-\frac{\pi}{6}}

Perlu diingat pula bahwa limxcxasin(xa)=1\lim_{x\to c}\frac{x-a}{\sin\left(x-a\right)}=1 dan limxcf(x)f(c)xc=f(c)\lim_{x\to c}\frac{f\left(x\right)-f\left(c\right)}{x-c}=f'\left(c\right)

sehingga didapat

limxπ6cscxcscπ6sin(xπ6)=1.f(π6)\lim_{x\to\frac{\pi}{6}}\frac{\csc x-\csc\frac{\pi}{6}}{\sin\left(x-\frac{\pi}{6}\right)}=1.f'\left(\frac{\pi}{6}\right)

Karena f(x)=cscxf\left(x\right)=\csc x maka f(x)=cscxcotxf'\left(x\right)=-\csc x\cot x. Akibatnya

f(π6)=csc(π6)cot(π6)f'(\frac{\pi}{6})=-\csc(\frac{\pi}{6})\cot(\frac{\pi}{6})

f(π6)=1sin(π6)cos(π6)sin(π6)f'(\frac{\pi}{6})=-\frac{1}{\sin(\frac{\pi}{6})}\frac{\cos\left(\frac{\pi}{6}\right)}{\sin\left(\frac{\pi}{6}\right)}

f(π6)=11212312f'(\frac{\pi}{6})=-\frac{1}{\frac{1}{2}}\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}}

f(π6)=312f'(\frac{\pi}{6})=-\frac{\sqrt{3}}{\frac{1}{2}}

f(π6)=23f'(\frac{\pi}{6})=-2\sqrt{3}