Jika diketahui k=x5k=x^5k=x5 maka klogx−xlogk^k\log x-^x\log kklogx−xlogk adalah ....
−4 45-4\ \frac{4}{5}−4 54
4 454\ \frac{4}{5}4 54
5 155\ \frac{1}{5}5 51
15\frac{1}{5}51
5
Diketahui:
k=x5k=x^5k=x5 maka xlogk=5^x\log k=5xlogk=5
Ditanya:
klogx−xlogk=?^k\log x-^x\log k=?klogx−xlogk=?
Jawab:
⇔klogx−xlogk\Leftrightarrow^k\log x-^x\log k⇔klogx−xlogk
Gunakan sifat logaritma bloga=1alogb^b\log a=\frac{1}{^a\log b}bloga=alogb1 , jadi klogx=1xlogk=15^k\log x=\frac{1}{^x\log k}=\frac{1}{5}klogx=xlogk1=51
=15−5=\frac{1}{5}-5=51−5
=15−255=\frac{1}{5}-\frac{25}{5}=51−525
=−245=-\frac{24}{5}=−524
=−445=-4\frac{4}{5}=−454
Jadi, klogx−xlogk=−4 45^k\log x-^x\log k=-4\ \frac{4}{5}klogx−xlogk=−4 54