Latihan Matematika Peminatan Kelas XI Jumlah dan Selisih Sin-Cos
# 9
Pilgan

Nilai dari 2sin(π2α)cos(π2+α)=....2\sin\left(\frac{\pi}{2}-\alpha\right)\cos\left(\frac{\pi}{2}+\alpha\right)=....

A

2sinα12\sin\alpha-1

B

sin2α\sin2\alpha

C

1+sin2α1+\sin2\alpha

D

1sin2α1-\sin2\alpha

E

sin2α-\sin2\alpha

Pembahasan:

Persamaan di atas dapat disederhanakan dalam bentuk penjumlahan sinus

2sin(π2α)cos(π2+α)=2sin12(π2α)cos12(π+2α)2\sin\left(\frac{\pi}{2}-\alpha\right)\cos\left(\frac{\pi}{2}+\alpha\right)=2\sin\frac{1}{2}\left(\pi-2\alpha\right)\cos\frac{1}{2}\left(\pi+2\alpha\right)

=2sin12(π+(2α))cos12(π(2α))=2\sin\frac{1}{2}\left(\pi+\left(-2\alpha\right)\right)\cos\frac{1}{2}\left(\pi-\left(-2\alpha\right)\right)

=sinπ+sin(2α)=\sin\pi+\sin\left(-2\alpha\right)

Ingat kembali bahwa sin(θ)=sinθ\sin\left(-\theta\right)=-\sin\theta maka

=sinπsin2α=\sin\pi-\sin2\alpha

=0sin2α=0-\sin2\alpha

=sin2α=-\sin2\alpha