Latihan Matematika Peminatan Kelas XII Limit Fungsi Trigonometri
# 4
Pilgan

Nilai limx0 xcos5xtan5xsin4x=....\lim\limits_{x\rightarrow0}\ \frac{x\cos5x}{\tan5x-\sin4x}=....

A

1-1

B

11

C

2-2

D

44

E

55

Pembahasan:

Rumus umum limit fungsi trigonometri

limx0 sinmxnx=mn\lim\limits_{x\rightarrow0}\ \frac{\sin mx}{nx}=\frac{m}{n}

limx0 tanmxnx=mn\lim\limits_{x\rightarrow0}\ \frac{\tan mx}{nx}=\frac{m}{n}

Subtitusi langsung x=0x=0 menghasilkan bentuk tak tentu 00\frac{0}{0}.

Munculkan bentuk yang sesuai dengan rumus limit fungsi trigonometri yang ada dengan cara mengalikannya dengan  1x1x\ \frac{\frac{1}{x}}{\frac{1}{x}} , maka

limx0 xcos5xtan5xsin4x=limx0 (xcos5xtan5xsin4x1x1x)\lim\limits_{x\rightarrow0}\ \frac{x\cos5x}{\tan5x-\sin4x}=\lim\limits_{x\rightarrow0}\ \left(\frac{x\cos5x}{\tan5x-\sin4x}\cdot\frac{\frac{1}{x}}{\frac{1}{x}}\right)

                           =limx0 cos5xtan5xxsin4xx\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\lim\limits_{x\rightarrow0}\ \frac{\cos5x}{\frac{\tan5x}{x}-\frac{\sin4x}{x}}

                           =cos054\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{\cos0}{5-4}

                           =11\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{1}

                           =1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =1

Jadi, nilai limx0 xcos5xtan5xsin4x=1\lim\limits_{x\rightarrow0}\ \frac{x\cos5x}{\tan5x-\sin4x}=1