Latihan Matematika Peminatan Kelas XII Limit Fungsi Trigonometri
# 6
Pilgan

Nilai limx0 sin4xsin4xcos2x4x3=....\lim\limits_{x\rightarrow0}\ \frac{\sin4x-\sin4x\cos2x}{4x^3}=....

A

14\frac{1}{4}

B

12\frac{1}{2}

C

22

D

33

E

44

Pembahasan:

Subtitusi x=0x=0 menghasilkan nilai tak tentu 00\frac{0}{0}

Ingat identitas trigonometri dan rumus limit trigonometri

2sin2x=1cos2x2\sin^2x=1-\cos2x

limx0 sinaxbx=ab\lim\limits_{x\rightarrow0}\ \frac{\sin ax}{bx}=\frac{a}{b}

Dengan demikian,

limx0 sin4xsin4xcos2x4x3\lim\limits_{x\rightarrow0}\ \frac{\sin4x-\sin4x\cos2x}{4x^3}

=limx0 sin4x(1cos2x)4x3=\lim\limits_{x\rightarrow0}\ \frac{\sin4x\left(1-\cos2x\right)}{4x^3}

=limx0 sin4x(2sin2x)4x3=\lim\limits_{x\rightarrow0}\ \frac{\sin4x\left(2\sin^2x\right)}{4x^3}

=limx0 sin4xsin2x2x3=\lim\limits_{x\rightarrow0}\ \frac{\sin4x\sin^2x}{2x^3}

=limx0 sin4x2xlimx0 sinxxlimx0 sinxx=\lim\limits_{x\rightarrow0}\ \frac{\sin4x}{2x}\cdot\lim\limits_{x\rightarrow0}\ \frac{\sin x}{x}\cdot\lim\limits_{x\rightarrow0}\ \frac{\sin x}{x}

=211=2\cdot1\cdot1

=2=2

Jadi, nilai limx0 sin4xsin4xcos2x4x3=2\lim\limits_{x\rightarrow0}\ \frac{\sin4x-\sin4x\cos2x}{4x^3}=2