Nilai cos4x−sin4xcos8x\frac{\cos4x-\sin4x}{\cos8x}cos8xcos4x−sin4x sama dengan ....
1cos4x+sin4x\frac{1}{\cos4x+\sin4x}cos4x+sin4x1
1cos4x−sin4x\frac{1}{\cos4x-\sin4x}cos4x−sin4x1
cos4x+sin4x\cos4x+\sin4xcos4x+sin4x
cos4x−sin4x\cos4x-\sin4xcos4x−sin4x
1cos4x\frac{1}{\cos4x}cos4x1
Rumus umum cosinus dengan sudut ganda adalah sebagai berikut.
cos2x=cos2x−sin2x\cos2x=\cos^2x-\sin^2xcos2x=cos2x−sin2x
cos2x=1−2sin2x\cos2x=1-2\sin^2xcos2x=1−2sin2x
cos2x=2cos2x−1\cos2x=2\cos^2x-1cos2x=2cos2x−1
Dengan demikian,
cos4x−sin4xcos8x\frac{\cos4x-\sin4x}{\cos8x}cos8xcos4x−sin4x =cos4x−sin4x(cos24x−sin24x)=\frac{\cos4x-\sin4x}{\left(\cos^24x-\sin^24x\right)}=(cos24x−sin24x)cos4x−sin4x
=cos4x−sin4x(cos4x−sin4x)(cos4x+sin4x)=\frac{\cos4x-\sin4x}{\left(\cos4x-\sin4x\right)\left(\cos4x+\sin4x\right)}=(cos4x−sin4x)(cos4x+sin4x)cos4x−sin4x
=1cos4x+sin4x=\frac{1}{\cos4x+\sin4x}=cos4x+sin4x1